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Abstract. We use simple diagrammatic techniques to analyse the ordinary representation theory
of theAn Hecke algebrasHn(q), and to constructHn(q) modules (resp. representations) which
are generically simple (irreducible) and well defined in every specialization ofq, including roots
of unity. We determine several physically important properties of these modules, generalizing
properties of the Temperley–Lieb algebra andits diagrams which have proved useful for lattice
models.

We show how these results can be used to locate energy level crossings inUq sl(N) invariant
quantum spin chains, and locate a new crossing of the thermodynamic limitUq sl(3) spin chain

at q
5−1
q−1 = 0 as an example.

1. Introduction

Recent results of Lascouxet al [29], Grojnowski [20], Soergel [43] and Ariki [2] narrow a
crucial gap in the programme of analysis ofAn Hecke algebra representation theory proposed
in [32]. The programme can now be developed to give extensive information on the energy
level crossings ofUq sl(N) invariant quantum spin chains and vertex models (cf [41, 42]).
This note begins with a review of the relevant background in the ordinary representation
theory of theAn Hecke algebrasHn(q), using a simple diagrammatic technique (a variant
of braids [5] with some features of Penrose diagrams [39]). In fact this technique turns
out to be so powerful that we are able to include quick and simple new proofs of key, but
hitherto difficult, results in our review. We then proceed to give new results on the structure
of the exceptional cases. We use these to show how ‘classical’ results for the symmetric
group may be applied to spectrum level crossing problems, concluding with some specific
results in this area. Taken with the recent work of Lascouxet al [29] and Ariki [2] on
decomposition matrices ofSpecht modulesthis should in principle enable the reader to
compute allq-variation level crossings ofUq sl(N) spin chains.

The Hecke algebras are important in the study of exactly solvable models [4, 9, 10], in
computation in more general statistical mechanical models, and in the study of reaction-
diffusion processes [1]. They arise particularly in quantum spin chains [40] (including
those thought to be relevant to Anderson’s t–J model, and hence to highTc superconductivity
[3, 27, 34], although we will not make our approach specific to this case) and in the transfer-
matrix formulation of many classical two-dimensional models such as Potts, vertex, IRF
and generalized Andrews–Baxter–Forrester models. For a review and references see [12].
The ‘universal’ Hamiltonian,H, is given in equation (6) below. In all casesHn(q) for
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given n builds a system of physical ‘size’ proportional ton, so it is rather the sequence of
algebras

H∗ = {H1(q) ⊂ · · · ⊂ Hn(q) ⊂ Hn+1(q) ⊂ · · ·}
approaching the thermodynamic limit of largen which is of interest. The collective
representation theory of these algebras gives a classification scheme for the spectra of
spin chains [34] and for classical thermodynamic observables [32], and may reveal hidden
symmetries of the model [38]. It also determines a lower bound on the degeneracies of
eigenvalues in the HamiltonianH, or transfer matrixT , andq = roots of unity have been
identified as energy level crossing points ([33] and see later).

Unfortunately the determination of the structure ofHn(q) at roots of unity has always
appeared very complicated. (Even adescriptionof the structure, where known, can appear
so [32]!) Here, by pulling together several strands of recent technology and illustrating
them with some intuitive pictures we have been able to develop a relatively straightforward
form of analysis (and one which provides a suitably unified treatment of all the elements
of H∗). This simplicity has in turn allowed us to obtain previously inaccessible results on
the structure of theqr = 1 exceptional cases.

1.1. Basic definitions

(1.1). Recall [5, 22] that thebraid grouponn stringsBn has generators 1, g1, g2, . . . , gn−1

and inverses, and relations:

gigi+1gi = gi+1gigi+1 (1)

gigj = gjgi i 6= j ± 1. (2)

(1.2). For q ∈ C the Hecke algebraHn = Hn(q) is the quotient of the braid group algebra
CBn by the relations

(gi + 1)(gi − q) = 0. (3)

Note in particular, therefore, thatHn(1) = CSn, the group algebra of the symmetric group.
Recall that this is a semi-simple algebra with irreducible representations indexed byYoung
diagramsof degreen, written λ ` n [24].

(1.3). The set ofweightsof degreen, depthN , is

3(n,N) =
{
λ = (λ1, λ2, . . . , λN)|λi ∈ N0,

∑
i

λi = n
}
.

Let SN act on3(n,N) via πλ = (λπ(1), λπ(2), . . .). The orbits of this action may be indexed
by their dominant weights(Young diagrams)

3+(n,N) = {λ ∈ 3(n,N)|λi > λi+1}
so λ ` n meansλ ∈ 3+(n, n). For λ ∈ 3(n,N) let λd denote the dominant weight in the
orbit of λ. For λ ` n let λ′ denote the Young diagramconjugateto λ.

(1.4). A set of words in 1, g1, g2, . . . , gn−1 is a basis ofHn(q) if it is identically the set
Sn in caseq = 1. Conversely, writingSn as a set of reduced words, this set passes to a
reducedbasisBn of Hn(q), unique up to equations (1) and (2).

(1.5). By equation (3)everyword is inHn := Z[q]Bn, theZ[q] span of the reduced basis.
ThusHn is aZ[q]-form of the algebra, andHn(q) := C⊗Z[q] Hn.



On quantum spin-chain spectra 5473

(1.6). For x ∈ Hn(q) andb ∈ Bn write Cb(x) for the coefficient ofb in x.

(1.7). For b ∈ Bn let bT denote the word obtained by reversing the order of letters. This
transformation may be extended linearly toHn(q).

(1.8). For x ∈ Hn(q) thenx(k) is x ‘translated’ bygi 7→ gi+k for all i (we think ofHn(q)
embedded naturally inHm(q), m� n, k).

The main outstanding interest in Hecke algebras lies in cases whereHn(q) has a
representation theory different from that ofCSn. As we will verify, Hn(q) ∼= CSn unless
q is one of a certain set of algebraic points. We will call these pointsspecial, and the
remaindergeneric.

(1.9). Irrespective of the choice ofq, we always have aq-generalization of the
(unnormalized) Young symmetrizer [47]. ForN ∈ N

LN+1 = 1+ g1+ g2g1+ · · · + gNgN−1 . . . g1 (4)

(soL(1)3 = 1+g2+g3g2, for example); and the unnormalizedq-Young symmetrizer is given
by

Y0 = Y1 = 1 YN+1 = LN+1Y
(1)
N . (5)

(1.10). Let [N ] = qN−1
q−1 (called q-integers), [0]! = 1, [N ]! = ∏N

i=1[i], and for
λ ` n [λ]! = ∏

i [λi ]! (product over rows ofλ). Let K denote the monoid generated
by q-integers andq.

Proposition 1.The elementYN ∈ HN obeysYN =
∑

b∈Bn
b, Y TN = YN and

giYN = YNgi = qYN (i = 1, 2, . . . , N − 1)

YNYN = [N ]!YN.

(1.11). Hence for 16 m < n, HnYmHn ⊃ HnYm+1Hn. ForN ∈ N define quotient algebras

HN
n :=

{
Hn/HnYN+1Hn N < n

Hn N > n
.

(1.12). In a given physical model the representationR of Hn(q) appearing in the model
Hamiltonian

H =
n−1∑
i=1

R(gi) (6)

(or the corresponding transfer matrix) is universally characterized by the vanishing of the
image of certain elements of the algebra. For example, forVN the fundamentalUq sl(N)
module, the representationRN : Hn(q) → End(V ⊗nN ) which appears in theUq sl(N)
invariant spin chain and associated vertex models [10, 11, 33] obeysRN(YN+1) = 0. Indeed
the quotient algebrasHN

n arefaithfully represented by the representationsRN arising in these
models [33]. Now while for givenn the algebrasHn andHN

n can be identified for large
enoughN , with fixedN the sequenceH∗ and the sequence

HN
∗ = {HN

n : n = 1, 2, . . . ;N fixed}
are markedly different objects (for example, the corresponding Hamiltonians have different
ground states [34]).
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1.2. Representation theory generalities

We will show that the representation theory ofHN
n may be determined largely from that

of the subalgebrasHN
m for all m < n, with the remaining calculations being relatively

simple. This means in principle that anyHN
n can be analysed by iteration onn from the

baseH1 = HN
1
∼= C.

In particular, one crucial observation relatesHN
∗ algebras of different sizen:

Proposition 2.For q, [N ]! 6= 0 there is an isomorphism of unital algebras

YNH
N
n+NYN ∼= HN

n

given byx(N)YN 7→ x.

We will prove this diagrammatically in section 2. Let us first look at the consequences of
this result. To do this succinctly we can use category theory [7] (readers unfamiliar with
this might skip the next paragraph and wait until we have introduced our own pictorial
formalism for a detailed explanation).

(1.13). It is standard (Green [19]) that ifA is an algebra ande an idempotent inA then
there is an exact functor on the category of leftA modules (in this papermodulewill mean
left module unless otherwise stated):

G′ : A−mod→ eAe −mod

G′ :M 7→ eM

(see [19, 32] for the morphism map). Consider the case in whichA is HN
n+N ande = YN

[N ]!

(for [N ]! 6= 0). Proposition 2 says that we may extend the functor trivially ontoHN
n −mod.

This functor takes an irreducible representation to an irreducible representation (or zero),
and is surjective. There is a right (but not left) inverse map

F ′ : eAe −mod→ A−mod

F ′ : N 7→ Ae ⊗eAe N
so that

F ′G′(A) = Ae ⊗eAe eA = Ae ⊗eAe A (7)

and

G′F ′(N ) = eAe ⊗eAe N ∼= N . (8)

(1.14). Now let

1 = {N1,N2, . . .}
be a complete set of inequivalent simple modules ofeAe. Then by equation (8)

F ′(N1), F
′(N2), . . .

are distinctA modules. SupposeV is a proper submodule ofF ′(Ni ). TheneV = 0 (for
supposeeV 6= 0, thenG′(V ) = eV ⊆ Ni , and thus in facteV ∼= Ni , since the latter is a
simpleeAe-module, whereuponV ⊇ AeV = F ′(Ni )—a contradiction). Now letVi be the
sum of all submodulesV with eV = 0. Then this is the unique maximal proper submodule
of F ′(Ni ). Thus

F ′(N1)/V1, F
′(N2)/V2, . . .
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are inequivalent simple modules ofA. If a simple moduleM has no equivalent in this list
theneM = 0, soM is also anA/AeA module.

A useful example if this set-up is the well known result:

Proposition 3.ForA, a k-algebra, lete ∈ A be a primitive indempotent. Then the left ideal
Ae has unique maximal proper submodule.

Proof. Primitivity implies eAe = ke ∼= k as ak-algebra. ThusN1 = ke is (the only)
simpleke-module, and soF ′(ke) = Ae has unique maximal proper submodule. �

To summarize: the irreducible representationsR of A − mod are in correspondence
with those ofeAe − mod, except that those also inA/AeA − mod (i.e. those for which
R(e) = 0, which will be taken to zero byG′) do not have a correspondent ineAe and must
be discovered separately.

For example, in our case, if we know the representations and morphisms (intertwiners)
of HN

n (and hence ofYNHN
n+NYN ) we know those ofHN

n+N , except for those coming
from HN

n+N/H
N
n+NYNH

N
n+N , which we must determine by a separate calculation. But this

quotient is justHN−1
n+N , so again these may be determined by iteration (this time onN with

baseH 1
n+N ∼= C). Indeed given proposition 2 we can move straight to a fundamental result

onHN
n :

Proposition 4.Forq, [N ]! 6= 0, irreducible representations ofHN
n are indexed by3+(n,N).

Outline proof. (We will complete this proof in section 3.3). By induction onn andN .
For eachn andN definef to be the isomorphism functor corresponding to proposition 2,
andF = F ′f −1 andG = fG′. Now suppose the proposition true at levelHN

n−N and level
HN−1
n (of n andN respectively). Then all the irreducibles indexed by Young diagrams

with less thanN rows come fromHN−1
n , and the image ofλ ∈ 0+(n− N,N) underF is

λ+ (1, 1, . . . ,1). �

This is, as it were, a profoundlymathematicalconstruction. One striking thing about
it, therefore, is the fact that the mapF preserves statistical mechanical observables in the
following sense. The spectrum of a physical transfer matrix or Hamiltonian as in equation (6)
breaks up into parts from distinct irreducible representations ofHn(q) contained within it.
Now, appropriately treated eigenvalues can be collected from a set of increasing values
of n to form a converging sequence approaching a largen limit observable—but there
is essentially only one way of doing this [8]. For example, for eachn the free energy
comes from the largest eigenvalue of the transfer matrix, and it is easy to figure out which
irreducible representation gives this [34]. The functorF which takes us from onen to
another correctly picks out the appropriate representation each time! There is also evidence
that it maps spin–spin correlations to spin–spin correlations, and so on. A partial explanation
is given in [32], but this deserves full generalization. In the present paper we deal with the
mathematical side of this issue.

Another way of looking at this is through theq-Schur–Weyl dualityHN
n
∼=

EndUq sl(N)(V
⊗n
N ) [33], which implies that for eachn the index set for irreducibles ofHN

n

maps injectively into the index set for irreducibles ofUq sl(N). Since this set is independent
of n it provides a formal link between those irreducibles ofHN

n1
andHN

n2
(say) with the

sameUq sl(N) index. We will see in section 3 that theF andUq sl(N) links coincide.
Note thatYN is central inHN

N . On the dualUq sl(N) side it is a projector fromV ⊗NN

to the trivial representationV(1N ). Proposition 2 may be verified in these terms,given the
duality, by observing thatV ⊗nN

∼= V(1N ) ⊗ V ⊗nN . We will include a direct proof of the
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proposition, however, since this is self-contained andvery much shorter than the proof of
duality!

The functorsF will also allow us to explicitly construct representations of anyHn(q)
by iterating from the known representations ofHq(q) ∼= C.

(1.15). Let A be an algebra,M ∈ A − mod andS ⊂ A − mod. We say thatM has an
S-filtration if it has a finite series of submodules 0= M0 ⊂ M1 ⊂ · · · ⊂ Ml = M such
that for eachi = 1, 2, . . . , l there is someN ∈ S such thatMi/Mi−1

∼= N . ThenN is
called anS-filtration factor ofM. If the number of timesN occurs in a given series for
M is independent of the choice of series, then it is called the filtration multiplicity ofN in
M. For example, ifS is a complete set of inequivalent simple modules then every finite
dimensional module has anS-filtration, and well defined filtration multiplicities (in this case
called composition multiplicities) with respect toS.

1.3. Physics motivation and interpretation

Physically, while proposition 4 is well known for genericq [22], it is even more useful forq
roots of unity (or at least those with [N ]! 6= 0, i.e.qN+1 = 1 and higher roots) since, while
it is known that the size of irreducible representations generally gets smaller at roots of
unity [33] we learn here that the number of distinct ones remains fixed. The only consistent
explanation of this in a Hamiltonian representationR of dimension independent ofq is that
the multiplicities of irreducibles (and hence of Hamiltonian eigenvalues) increases at such
a q, i.e. we have energy level crossings! The manner in which the functorF maps from
HN
n (via proposition 2) toHN

n+N tells us that once such a level crossing occurs at some
level n it will be present at all higher levelsnl = n+ lN in the sequence. Thus it is not an
accidental crossing, but a phenomenon which will survive to the thermodynamic limit.

In fact the spin-chain representationRN has (independent ofq) a filtration with factors
the set of generically irreducible representations we will construct (this is standard, see [21]),
thus if we can determine the morphisms and composition series of these representations in
terms of irreducibles (dependent onq) we have substantial information on theq dependence
of spectrum degeneracies.

1.4. Explicit applications: level crossings

Fix N (indeed it may be helpful to think concretely ofN = 3), and recall that a partial
classification of states of the basicn = Nm + l site Uq sl(N) invariant spin chain (n
large, l ∈ {0, 1, . . . , N − 1}) can be made in terms of partitionsλ = (λ1, λ2, . . . , λN−1)

where λ1 > λ2 > · · · > λN−1 > 0 and
∑N−1

i=1 λi is congruent tol mod N . We
see from above that this corresponds to a classification for irreducible representations of
HN
n (q) in the largen limit, stabilized by theF and G functors. That is, thefibre of

representations labelled(λ1, λ2, . . . , λN−1) is all those representations with the usual index
of the form (p + λ1, p + λ2, . . . , p + λN−1, p), p ∈ N (for givenp the action ofF takes
(p + λ1, p + λ2, . . . , p + λN−1, p) to (p + 1+ λ1, p + 1+ λ2, . . . , p + 1+ λN−1, p + 1)).

The multiplicity (at fixed momentum) of an eigenvalue of the Hamiltonian in
equation (6) will be given by the multiplicity of the corresponding irreducible representation
(L(µ), say) inRN . By duality this multiplicity equals the dimension of the corresponding
indecomposablesummandT ′(µ) of V ⊗nN as aUq sl(N)-module (the ‘tilting module’ [17]—
here we useprimeson modules to distinguishUq sl(N)-modules, and for theseµ should be
read as thefibre label). The dimension ofT ′(µ) may be determined from its Weyl module
content (since the dimensions of Weyl modules are known [37]). On general grounds [16]
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the multiplicity of Weyl module1′(λ) in tilting moduleT ′(µ) coincides with that ofHN
n (q)

Specht moduleSλ (see later) inHN
n (q) indecomposable projective moduleP(µ). And these,

finally, are multiplicities which can be directly determined from results in this paper!
For example, later, in equations (31) and (32), we will exhibit a level crossing at

n = 5 between states of theUq sl(3) Hamiltonian corresponding to the generic irreducible
representations indexed by (3,1,1) and (4,1), asq passes through [5]= 0. The point is,
because of theF functor acting on the morphism between these two modules, ourn = 5
result tells us that theλ = (2) andλ = (4, 1) states of the basicl = 2 Uq sl(3) spin chain
always produce a level crossing atq5 = 1 (q 6= 1), i.e. for n = 3m + 2, anym. (In
fact it is implicit in Wenzl [45] and in [32] that there arer = 5 level crossings associated
with λ = (2) in this model. The identification of the sector responsible is new, however.)
Altogether, the thermodynamic limit multiplicity of the part of the Hamiltonian spectrum
labelled by (4,1) increases at [5]= 0 from its generic level of 24-fold degeneracy (recall
[37] that the dimension ofU sl(3) Weyl module1′(λ) is 1

2(λ1+2)(λ1−λ2+1)(λ2+1)) to
30-fold degeneracy (30 being the dimension of the corresponding tilting module, computed
via T ′(4, 1) = 1′(4, 1)+1′(2)—see section 3.4).

Further, we will see that theλ = (4, 1) andλ = (5) states also have crossings (this is
implicit in [32]), but the states of the(4, 1) sector involved in these crossings are disjoint
from the crossings of(4, 1) and (2).

1.5. Overview

To derive these results we are unavoidably concerned with mathematical tools. We will
go into details only when they are physically or otherwise intuitively helpful, or when
conducive to organizing in a physical way. Recent papers in this area use crystal base and
algebraic geometry [2, 29]. These are beautiful, but not relevant by the above criteria. We
treat them as black boxes. We will, however, provide sufficient background to enable their
use to find level crossings. A few remarks on feedback of our results into representation
theory are placed in appendix B.

Lascouxet al [29] give an algorithm for determining simple composition factors of
Specht modules. This is data we need (we will discuss the role of Specht modules), but
since it is only an algorithm it is not so useful without some additional organizational
control over the data it produces. We will see that proposition 2 provides this. Also,
note our thermodynamic limit process works through tracking modulemorphisms. The
decomposition matrices which encode all the composition factors do not provide this data.
However, some of it can be recovered by comparing them with Gram matrix determinant
calculations (section 4).

In the next section we prove proposition 2. In section 3 we use this to construct
‘standard’ modules ofHN

n (q) and to determine their images under theF andG functors,
and in section 4 we look at the simple submodules of these modules and associated level
crossings.

2. Diagrammatic proof of proposition 2

Having glimpsed the utility of proposition 2 we will now prove it. To avoid the opacity
and tedium of an ‘index chasing’ proof (cf [32] for example) we introduce some diagrams,
making crude use of the Hecke algebra’s properties as a braid-group quotient. The basic
idea is to help locate elements and subalgebras ‘spatially’ with respect to the ‘strings’ of
the braid (the notion ofi in gi as a spatial coordinate comes directly from the role ofgi



5478 P P Martin and B W Westbury

in the physical transfer matrix [32]). We do not, in fact, make much use of theseas braid
diagrams, i.e. we do not often use the braid relations explicitly; however, our diagrams
clarify situations in which two elements commute by virtue of being realized on disjoint
subsets of strings.

The key for our diagrams is as follows.

(2.16). For givenN the algebraHN
n itself is represented as a blank rectangle across all

the n strings of the corresponding braid group identity element. For example, withn = 9:

.

Note that by takingN sufficiently large we can makeHN
9 = H9, and so on. We will use

the same picture when working withHn, since these cases may always be distinguished by
context.

(2.17). Form < n thenHN
m may be realized as a subalgebra ofHN

n in various ways, such
as by acting on some subset ofm of the n strings (the picture below shows a ‘translated’
embedding ofHN

4 ⊂ HN
9 ).

(2.18). Defining

gi,j := gigi−1 . . . gj+1gj (i > j)

we will adopt the symbol scheme illustrated by the following examples:

.

Note that we avoid the usual braid-crossing picture ofgi for the time being, as this can be
distracting. Wewill use it later. Our point here is to view the various objects as ‘beads’
threaded on two or more strings, emphasizing which commute and which do not (gi and
gi+1 do not). We work as far as possible inHn where we do not have access tog−1

i , so this
picture is not ambiguous. Note also that action from the left is depicted as action from the
top, that is, while words are read from left to right, pictures are readand composedfrom
top to bottom.

For example, the readily proven isomorphism ofZ[q]-modulesHm+1
∼= Hm⊕HmgmHm

gives

(9)
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(NB the middle term on the lower line simplifies), while equation (5) iterates to

. (10)

(2.19). Here the last picture reminds us of the obvious generatororder reversal symmetry
YN = YTN . This is time reversal symmetry in the statistical mechanical setting [32]. We have
taken care in our choice of diagram shapes to respect the ‘time’ and ‘space’ symmetries
of objects, thusYN is both top to bottom and left to right reflection symmetric (!), butLN
is neither (a right-angle triangle with the right angle in the bottom left-hand corner is thus
(L

(k)
N )

T for somek andN ).

Noting the obvious inner automorphism ofHn+N takingYN to Y (n)N , we see that to prove
proposition 2 it is enough to show

Lemma 1.

Y
(n)
N Hn+NY

(n)
N 6 Hn+NY

(n−1)
N+1 Hn ⊕ Y (n)N Hn (11)

is an inclusion ofHn-bimodules.

(Proposition 2 follows on passing to the fieldC, since the first term on the right-hand
side vanishes inHN

n+N and there is an obvious morphism from the second term ontoHN
n

when [N ]! 6= 0.) Lemma 1 looks complicated, but may be illustrated by the following
‘diagrammatic’ proposition onZ[q]-modules

. (12)

Proof. We claim that forn−N < m 6 n there is aZ[q]-module inclusion

(L
(n)
N L

(n+1)
N−1 . . . L

(m+N−1)
n−m+1 )Hm+NY (n)N ↪→ Hn+NY (n−1)

N+1 Hn ⊕ Y (n)N Hn (13)

(i.e. into the right-hand side of equation (11)), and prove this by induction onm. The last
case(m = n) establishes our lemma.

As a base, the claim is true form = n − N + 1 by suitably applying the top line of
equation (9) toHn+1 in the left-hand side of equation (13). Suppose it is true at level
m = k − 1. Then at levelm = k consider the inclusion, derived from another iterate of
equation (9), illustrated below

.

We need to show that the left-hand side here maps into the right-hand side of equation (13).
Our inductive assumption is that the first term on the right-hand side here does so, since
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L
(k+N−1)
n−k+1 Y

(n)
N = [n− k + 1]Y (n)N , thus we have only to show that the second term does so.

Using the definition ofLN andgiHn ⊂ Hn(i < n) the second term obeys:

.

UsingLN+1Y
(1)
N = YN+1 (equation (5)) again the first term on the right here is manifestly

contained in the first term in the right-hand side of equation (13) (consider it in the form of
equation (12)), and the second term maps into the right-hand side of equation (12) by the
inductive assumption. �

Now pass to any field in which [N ]! is invertible and the composite map toY (n)N HN
n
∼=

HN
n (asHN

n -bimodules) is obviously surjective.

3. Applications of proposition 2

(3.20). Now apply the programme outlined in section 1.2, composing the functorsF ′ and
G′ with the isomorphism of proposition 2 for eachn andN . As above, it will be convenient

to takee = Y
(n)
N

[N ]! . From now on we will also show the levelsn andN explicitly, hence the
functors

HN
n −mod

FNn→ HN
n+N −mod

GN
n→ HN

n −mod

have object maps

FNn : M 7→ HN
n+NY

(n)
N ⊗HN

n
M and GN

n : L 7→ Y
(n)
N L.

The latter is illustrated by the following picture, in which an arbitraryHN
n+N module is

mapped to anHN
n Y

(n)
N module which is trivially also a leftHN

n module, since theY (n)N (here
specificallyY (6)3 ) clearly commutes with the indicated action ofHN

n (hereH 3
6 ) from the top

.

We next introduce and discuss the fate of the most important modules ofHn(q) under
these functors. Since the functors map betweenHN

n andHN
n+N , not Hn(q) andHn+N(q),

we need to be able to move between categoriesHn − mod andHN
n − mod. To do this

we note thatHN
n modulesrestrict to Hn(q) modules which are identical to them as vector

spaces, whileHn(q) modules induceHN
n modules which are not in general identical. In

the next section we establish a simple condition under which theyare identical.
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3.1. Permutation modules ofHn(q)

(3.21). The image ofYN under theHn(q) algebra involution0 given by

0 : gi 7→ −1− gi + q (14)

is XN ∈ HN , depicted by a diamond. The example below illustrates the identity
g3X

(1)
6 = −X(1)6 :

.

(3.22). For λ ∈ 3(n,N) defineXλ, Y λ ∈ Hn by

Xλ =
∏
i

X
(
∑i−1
j=1 λj )

λi
Y λ =

∏
i

Y
(
∑i−1
j=1 λj )

λi

i.e. one factorXλi (resp.Yλi ) for each row of the Young diagram ofλ.

(3.23). Forλ ` n theHn(q) permutation modulePλ is given byPλ = HnXλ [21, 24], i.e.
it takes the form

(15)

(this example isPλ for λ = (4, 3, 2), that is, P (4,3,2) = H9X4X
(4)
3 X

(7)
2 ). Note that

H9X3X
(3)
4 X

(7)
2 and other such rearrangements are isomorphic as left modules (at least

providedq 6= 0). ThisPλ specializes atq = 1 to theSn induced module whose irreducible
decomposition begins

(4)⊗ (3)⊗ (2) = (4, 3, 2)⊕ . . . (16)

where the rest of the summands can be determined using the Littlewood–Richardson rules
[24, 21].

(3.24). The rightHn(q) moduleQλ
H := Yλ′Hn. In our case:
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(note thatλ′ = (3, 3, 2, 1) so we haveQλ
H = Y3Y

(3)
3 Y

(6)
2 Y

(8)
1 H9 with Y1 = 1). This

specializes atq = 1 to theSn-induced right module

(13)⊗ (13)⊗ (12)⊗ (1) = (4, 3, 2)⊕ . . .
(an otherwise different set of summands to equation (16)).

(3.25). Forλ ` n consider an elementσλg ∈ Bn such that, when the strings are partitioned
in the natural way byλ′ at the top and byλ at the bottom, no two strings in a given part at
the top (resp. bottom) either cross each other or travel to the same part at the bottom (resp.
top). This construction is unique, since it forces theith string from thej th part at the top
to travel down to be thej th string in theith part at the bottom. PutEλg := Yλ′σλg Xλ, for
example

where each crossing should be interpreted as agi (NB putting ag−1
i , or a linear combination

other than 1, at each crossing only changes the element by a scalar in this environment).
Note thatCσλg (E

λ
g ) = 1 by construction. Hence

Proposition 5.The vector spaceQλ
H ⊗Hn P λ = CEλg , i.e.

(17)

is one dimensional.

NB The tensor product is strictly superfluous here. We leave it in as a guide to the eye.

(3.26). Let A be ak-algebra. Aprimitive elementx ∈ A \ {0} is such thatxAx ⊆ kx. A
pre-idempotentis a primitive such thatxx 6= 0.

Proposition 6.Eλg is primitive in Hn(q) (any q), and I λ := (Y λ
′
σλg X

λ(σ λg )
T Y λ

′
) is pre-

idempotent forq generic.
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Proof. Using proposition 5

(Y λ
′
σλg X

λ)Hn(Y
λ′σλg X

λ) = Yλ′(σ λg XλHnY λ
′
σλg )X

λ = kY λ′σλg Xλ.

Further, recall that ify is any element of a semi-simple algebra then there exists an element
a such thatyay = y. Now supposeI λI λ = 0 for someq such that [λ′]! is invertible. Then
for any a we can use proposition 5 again to get

I λaIλ = (Y λ′σλg Xλ(σ λg )T Y λ
′
)a(Y λ

′
σλg X

λ(σ λg )
T Y λ

′
)

= Yλ′σλg Xλ(σ λg )T (Y λ
′
aY λ

′
σλg X

λ)(σ λg )
T Y λ

′

= caY λ′σλg Xλ(σ λg )T (Y λ
′
σλg X

λ)(σ λg )
T Y λ

′

= ca

[λ′]!
(Y λ

′
σλg X

λ(σ λg )
T Y λ

′
)(Y λ

′
σλg X

λ(σ λg )
T Y λ

′
)

= ca

[λ′]!
I λI λ = 0

(someca ∈ C [13]) contradicting semi-simplicity. �

(3.27). The dominance order [30] is a partial order on partitions ofn given by

λ D µ if
m∑
i=1

λi >
m∑
i=1

µi ∀m.

For example

(6) D (5, 1) D (4, 2)
D (3, 3) D
D (4, 12) D (3, 2, 1)

D (23) D
D (3, 13) D (2, 2, 12) D (2, 14) D (16).

Proposition 7.The vector spaceQλ
H ⊗Hn P ν = 0 unlessλ D ν.

Proof. ConsiderYλ
′
bXν , b ∈ Bn. Suppose two strings from someYλ′i at the top of the

braid picture eventually reach a givenXνj at the bottom (as must happen unlessλ D ν,
by an elementary sorting argument). Then there is always a set of moves using the braid
relations andqY = giY andgiX = −X (proposition 1), such as those illustrated below, to
bring these strings ‘parallel’. For example, focusing on a particularYN andXM we might
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have

(18)

whereupon the diagram vanishes usingY2X2 = 0 (equation (3)). �
This is an extremely useful observation. It means that any leftHn(q)-modulePλ, or

submodule thereof, is also anHN
n module (i.e. induces anHN

n module identical to it as a
vector space) provided thatλ′1 6 N . That is, in such a caseYN+1HnP

λ = 0.
We are now in a position to construct the generically irreducible modules ofHn(q).

3.2. Specht modules ofHn(q) (standard modules ofHN
n )

(3.28). The Hn(q) left Specht moduleSλ [45] (see also [14, 28, 15]) may be written
HnI

λ ∼= HnQλ
H ⊗Hn P λ, for example:

. (19)

Note that this construction is well defined for any value ofq. By proposition 5 such modules
are irreducible whenHn(q) is semi-simple. The particular one illustrated above specializes
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at q = 1 to the irreducible representation usually labelledλ = (4, 3, 2) [24]. Our labelling
is consistent with the way irreducibles are normally labelled in theq = 1 case.

The Specht moduleSλ is a left Hn module, not anHN
n module, so we cannot talk

directly of FNn (S
λ). However,Sλ obeysYλ′1+1S

λ = 0 by our argument above, so it will

induce anH
λ′1
n module identical to it as a vector space (and of course thisH

λ′1
n module will

be restricted to an ‘identical’Hn module). By taking care we can thus move backward and
forward betweenHn andHN

n and apply the functors to these modules. Where sensible (i.e.
for N = λ′1 as above, and in fact similarly forN > λ′1) we will not explicitly distinguish
betweenSλ as anHn module andSλ as anHN

n module.

3.3. Images of Specht modules under the factorsFNn andGN
n

The images ofSλ under the appropriate functorsFNn andGN
n are as follows. For a given

N thenλ = (λ1, . . . , λN) (some of these may be zero), and

FNn (S
λ) ∼= Sλ+ (20)

whereλ+ = (λ1 + 1, . . . , λN + 1). For the domain ofGN
n then eitherλN > 1 and the

obvious reverse map pertains:

GN
n (S

λ) ∼= Sλ− (21)

whereλ− = (λ1− 1, . . . , λN − 1), or λN = 0 andGN
n (S

λ) = 0 by (3.28). These maps may
be established as follows.

First, the left moduleFNn (S
λ) is given by

FNn (S
λ) = HN

n+NY
(n)
N ⊗HN

n
(Qλ

H ⊗HN
n
P λ).

To classify this module at leveln+N it is convenient to definegλ ∈ Hn by

gλ =
λ′1∏
i=1

(
gn+i−1,i+∑i

j=1 λi

)
(this looks complicated, but is very simple in the pictorial version as we will see in the next
figure) and to note that

HN
n Q

λ
H ⊗ PλgλXλ+ ∼= HN

n Q
λ
H ⊗ Pλ (22)

as anHN
n module. To see this look at the bottom three layers of the figure below—three

strings pulled off to the right play no role, and

XλgλXλ+ = [λ]!gλXλ+ (23)

sinceXNXN+1 = [N ]!XN+1. Working with this we end up with a module isomorphism

FNn (S
λ) ∼= HN

n+N Y
(n)
N Qλ

H︸ ︷︷ ︸
Yλ+HN

n

⊗gλXλ+

︸ ︷︷ ︸
prop.5= Q

λ+
H ⊗Pλ+

∼= Sλ+
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which, forN = 3 andn = 9 looks like

. (24)

The left moduleGN
n (S

λ) is given by

GN
n (S

λ) = Y (n−N)N HN
n Q

λ
H ⊗ Pλ =


0 if λ′1 < N

Y
(n−N)
N HN

n Y
(n−N)
N︸ ︷︷ ︸

∼=HN
n−N

Q
λ−
H ⊗ Pλ if λ′1 = N (25)

and the latter case becomes

HN
n−NQ

λ−
H ⊗HnXλ−gλ−Xλ ∼= Sλ−

by a move analogous to equation (22). The latter case is illustrated by

(26)

where the action ofHN
n−N is at the top left. �

The modules{Sλ|λ ` n} form a complete set of irreducibles for genericq, and from
propositions 2 and 4 we know that their maximal semi-simple quotients are simple and form
a (possibly over-) complete set of irreducibles forany q.
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3.4. Induction and restriction

Since Specht modules are well defined for anyq we may deduce partial restriction rules
for the inclusionHn−1 ↪→ Hn from the classicalq = 1 case. These are:

ResHnHn−1
(Sλ) ∼= +

µ=λ−�
Sµ (27)

as vector spaces, whereµ = λ − � denotesµ ` n − 1 obtained by subtracting a box
from the Young diagramλ and the sum is necessarily a direct sum ofHn−1 modules (in
characteristic 0)unlessq is a root of unity.

This formula, together with the linkage principal [26, ch 6] and proposition 2 is enough
to determine all composition multiplicities forN = 2, 3, and most (possibly all [35])
for generalN . For example, the fibre ofN = 3 Specht modules labelled byλ = (2) (i.e.
S(2), S(3,1,1), S(4,2,2) and so on) are easily shown to be projective in case [5]= 0. Restriction
takes projective to projective, so applying three successive restrictions as above to (say)
indecomposable projectiveP(4, 2, 2) produces a new projective with direct summand
P(4, 1), itself a non-direct sum of the Specht modules for the fibres(4, 1) and (2) (see
section 4). Other projectives are determined similarly by iteration on the usual dominance
order [23] on the fibre labels.

Mathematically oriented readers will also note that we may deduce that each algebra
HN
n (q) for which the Specht module corresponding to fibreλ = (0) is projective, is a

quasi-hereditary algebra (cf [16]).

4. Inner products and submodules

Although Specht modules are generically irreducible they are not in general irreducible at
roots of unity. Suppose we know the structure ofHm(q) for someq at all m < n. In
particular supposeSλ develops a submodule at thisq, i.e. for at least oneµ

0 0
↘ ↗

Sµ/V

↗ ↘
Sµ Sλ

↗ ↘
V L

↗ ↘
0 0

(28)

(diagonal sequences short exact). Then there are two cases to consider. Eitherµ′1 = λ′1 and
we already know about the composite

Sµ
ψ−→ Sλ

via F
µ′1
n−µ′1, or µ′1 < λ′1 andψ is ‘new’. In the latter case we can hope to find it by looking

at the Smith form of the Gram matrix [44, 25] for some inner product onSλ.

(4.29). A Gram matrix forSλ may be constructed as follows. LetA andB be two bases
for Sλ. Each can be of the form

A ⊂ {wEλg |w ∈ Bn}
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so for x ∈ A andy ∈ B we have an inner product〈x|y〉 via

xT y = (Xλ(σ λg )T Y λ
′
wTx )(wyY

λ′(σ λg )X
λ)

defn= 〈x|y〉Xλ(σλg )T Y λ
′
σλg X

λ.

Then

Cλxy
defn= 〈x|y〉 ∈ Z[q]

gives the matrix elements of the Gram matrixCλ (with respect toA,B).
If V λqc is the maximal proper submodule ofSλ at q = qc then dim(V λqc ) is the number

of invariant factors ofCλ which vanish atq = qc. Indeed, the number of invariant factors
vanishing like each power of(q − qc) tells us the dimension of some subquotient ofV λqc .
Taken with our category theory data and Frobenius reciprocity [7] this kind of data is often
enough to identifyV λ

qc
(cf [31]). In any case, any vanishing invariant factor (hence vanishing

det(Cλ)) signals a level crossing of the Hamiltonian atq = qc.
Note that 0 takesEλg 7→ (Eλ

′
g )

T . Thus det(Cλ) may similarly be computed via
(Eλ

′
g )w

T
x wy(E

λ′
g )

T = Dλ
xyI

λ′ . Once again, our pictures simplify the issue. Let us illustrate
with an example of theDλ type.

. (29)

It is straightforward to construct a basis ofSλ. Consider the caseλ = (3, 1, 1). Let
12311 be the Yamanouchi symbol [6], and associate this toEλg , theng3E

λ
g = 12131 (gi

interchanging theith and(i+1)th letters), and so on until all the legal symbols are generated.
A typical calculation is then

Eλgg3 · g3g2g4g3(E
λ
g )
T = 〈12131|11123〉Iλ
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which is illustrated by:

. (30)

Here the first identity follows from the expansion of equation (3)

g2
i = q1+ (q − 1)gi

andX2Y2 = 0, and the second usesgiX3 = −X3 and giY3 = qY3. Now in the present
environmentX4 = 0, so from equation (35) of the appendix we have

X3g3X3 = −q3[3− 1]!X3.

Writing ET ijkE for Eλggigjgk(E
λ
g )
T , the complete set of basis element products is

ETE ET 3E ET 23E ET 43E ET 243E ET 3243E
ET 3E ET 33E ET 323E ET 343E ET 3243E ET 33243E
ET 32E ET 323E ET 3223E ET 3243E ET 32243E ET 323243E
ET 34E ET 343E ET 3423E ET 3443E ET 34243E ET 343243E
ET 324E ET 3243E ET 32423E ET 32443E ET 324243E ET 3243243E
ET 3243E ET 32433E ET 324323E ET 324343E ET 3243243E ET 32433243E


We soon arrive at the Gram matrix (coefficients of, as it were,I λ, in the above):

D(3,1,1)=


(q + 1)(q2 + q + 1) q3(q + 1) −q3(q + 1) q4(q + 1) −q4(q + 1) 0

q3(q + 1) q(q + 1)(q3 + q + 1) q3(q + 1) q5(q + 1) 0 −q5(q + 1)

−q3(q + 1) q3(q + 1) q2(q + 1)(q3 + q2 + 1) 0 q6(q + 1) −q6(q + 1)

q4(q + 1) q5(q + 1) 0 q2(q + 1)(q4 + q + 1) q4(q + 1) q5(q + 1)

−q4(q + 1) 0 q6(q + 1) q4(q + 1) q3(q + 1)(q4 + q2 + 1) q6(q + 1)

0 −q5(q + 1) −q6(q + 1) q5(q + 1) q6(q + 1) q4(q + 1)(q4 + q3 + 1)


which has

det(D(3,1,1)) = q12(q + 1)6(q4+ q3+ q2+ q + 1)3 = q12[2]6[5]3. (31)

In this case the invariant factors can be readily deduced, and we find that we are looking
for a three-dimensional invariant subspace atr = 5. There is only one possibility for this
submodule—the irreducible quotient ofS(4,1) by S(5) (see [32]), i.e. ther = 5 moduleS(4,1)5
defined by the short exact sequence

0→ S(5)→ S(4,1)→ S
(4,1)
5 → 0. (32)
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That is, we have a diagram as in equation (28) withµ = (4, 1) and λ = (3, 1, 1). This
gives theq-level crossing discussed in section 1.4.

A complete list of Gram matrix determinants up ton = 4 is given in appendix B (in
all these cases the invariant factors are readily deduced). These determinants should be
compared with theSn results of James and Murphy [25]. Mathas and James [36] have
recently given an algorithm for computing the determinant of the Gram matrix in general,
which we also discuss in the appendix.

We have already seen how these results can be used to deduce all the relevant level
crossings. It is reasonable to suppose that we can ‘bootstrap’ these results to highern to
deriveall the Smith forms and all the corresponding crossings. This work is in progress.
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Appendix A. Useful identities

First

YN+1 = YN

[N ]!
YN+1 = YN

[N ]!
LN+1YN = YN

[N ]!
(1+ gN + gN−1gN + · · · + g1g2 . . . gN)YN

= YN

[N ]!
(1+ LNgN)YN = YN

[N ]!
(1+ [N ]gN)YN = YN + 1

[N − 1]!
YNgNYN

(33)

so

YNgNYN = [N − 1]!(YN+1− YN). (34)

Then applying0

XNgNXN = qN [N − 1]!XN −XN+1. (35)

Similarly

YNgNgN+1gN−1gNYN = [N − 2]!(YN+2− (YN+1+ gn+1YN+1+ YN+1gn+1

+gn+1YN+1gn+1)+ qYN + qgn+1YN). (36)

Appendix B. Gram matrices and Smith forms

A recursive construction of the determinant detµ of the Gram matrix for Specht moduleSµ

of dimension dimµ (cf the symmetric group case [25], replacing use of the orthogonal form
of Young [47] with that of Hoefsmit [22]) is as follows. LetI be the set of row positions
of µ from which a box may be removed, and fori ∈ I let µi denote the corresponding
subdiagram. Fori ∈ I let Ji be the set of hook lengths ofµ in the column above the
removable box. Then

detµ =
∏
i∈I

detµi
(
qx(µ

i)
∏
j∈Ji

[j ]

[j − 1]

)dimµi
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(note that the empty product
∏
j∈J1

(anything) := 1), wherex(µi) is defined as follows.

(B.30). For µi ⊂ µ as above the sety(µi) of standard (tableau) Yamanouchi symbols of
µi maps into that ofµ by Y i : y 7→ yi (and∪i∈I Y i(y(µi)) = y(µ)). For y ∈ y(µ) and
y0
µ the Bruhat lowest element (e.g.y0

µ = 12311 forµ = (3, 1, 1)) let l(y) be the minimum
number of adjacent element transpositions to move fromy0

µ to y. Thenx(µi) := l(Y i(y0
µi
)).

The result is due to Mathas and James (theqx(µ
i) part we conjecture from the results

of several explicit calculations).
For example:

detµ = detµ6 · detµ5 · detµ3 · detµ1

(
qx(µ

6) [16][13] . . . [8]

[15][12] . . . [7]

)dimµ6

×
(
qx(µ

5) [9][6][5][2]

[8][5][4][1]

)dimµ5 (
qx(µ

3) [5][2]

[4][1]

)dimµ3

.

(B.31). For A an algebra andM ∈ A − mod let Top(M) be the maximal semi-simple
quotient ofM. Let M = M0 ⊃ M1 ⊃ M2 ⊃ · · · be a sequence of submodules such
thatMi/Mi+1 = Top(Mi), then put Topi (M) := Top(Mi). In case this Top series exactly
reverses the Socle series of [18] we will call Topi (M) the ith Loewy layer ofM.

We conjecture that the power of(q−qr) which divides detµ is
∑

l l dim(Topl(Sµ|q=qr )).
The conjecture is correct in the Temperley–Lieb(N = 2) sector [32, 46]. We have verified
the conjecture by explicit calculation (as discussed in the text above) forN = 3 up ton = 6.
The results are shown (under the diagram to which they correspond) in the following figure.
We have included all hook lengths, and an indication of the ‘hook ratio’ factor associated by
the determinant algorithm to each edge of the restriction graph, writing (5/4.2/1) for[5][2]

[4][1] ,
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and so on. By this means the reader will readily confirm the agreement.

.

These results tie in with the conjecture of Lascouxet al [29] concerning Jantzen filtration
(see also [36]). For example atr = 4, n = 8 we have the Loewy layer decomposition into
irreducibles:

S(3,3,2) =
L(3, 3, 2)
L(4, 3, 1)
L(8)

.

The analysis is as follows. The three irreducibles shown are the composition factors of
S(3,3,2) by an application of section 3.4, or by [2, 29]. Their dimensions are 1, 40 and 1
respectively (the first of these follows from [22] or [45], the last is obvious, and the second
is thus forced). On the other hand

det(3, 3, 2) = ql(3,3,2) [2]42[3]21[4]42[5]21 wherelλ =
∑
y∈y(λ)

l(y).

Thus the naive upper bound on the dimension of the maximal submodule atr = 4 is 42,
and is not reached. The only possibility is that the Smith form of the Gram matrix has 40
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invariant factors vanishing like [4] (corresponding toL(4, 3, 1) at Loewy level 1) and one
invariant factor vanishing like [4]2 (corresponding toL(8) at Loewy level 2), leaving one
factor nonvanishing. The point is that the Lascouxet al [29] tables include what amounts
to a formal parameter(q), and the power of this parameter agrees with the Loewy level (cf
[46]).

We have checked several such cases. To illustrate the method, let us determine allH 3
n

Specht module morphisms forr = 4, l = 2 arising up ton = 2.3+ 2 = 8. Inspection
of our determinant table atn = 0, N + 2 = 2 shows noµ such that [4]| detµ ∈ K,
thus no morphisms coming from this level. Atn = 1, N + 2 = 5, det(3, 2) ∼ [4] and
det(2, 2, 1) ∼ [4]4. The first of these gives the exact sequence

0→ L(5)→ S(3,2)→ L(3, 2)→ 0

since there is only one candidate for a one-dimensional submodule. Noting hence that
dim(L(3, 2)) = 4, the second determinant gives exact

0→ L(3, 2)→ S(2,2,1)→ L(2, 2, 1)→ 0

(a simple check shows thatS(4,1) is not involved). This is everything.
Passing ton = 2.N + 2= 8 with theF functor these data become sequences:

0→ S(6,1,1)→ S(4,3,1)→ L(4, 3, 1) (37)

and

0→ S(6,1,1)→ S(4,3,1)→ S(3,3,2)→ L(3, 3, 2). (38)

But in the first of these we lose exactness atS(4,3,1) in principle [19] (and in practice)—
i.e. ker(p) is bigger than justS(6,1,1); and equation (38) is not exact atS(4,3,1) or S(3,3,2).
HoweverF takes projectives to projectives, soS(3,3,2) is projective.

From theN = 2 solution [32, p 174] we already know

0→ L(8)→ S(7,1)→ L(7, 1)→ 0 and 0→ L(7, 1)→ S(4,4)→ L(4, 4)→ 0

and of course dim(L(8)) = 1, so dim(L(7, 1)) = 6 and dim(L(4, 4)) = 8; while
det(6, 1, 1) = ql(6,1,1) [2]21[4]6[8]6 gives

0→ L(7, 1)→ S(6,1,1)→ L(6, 1, 1)→ 0

so dim(L(6, 1, 1)) = 15. Lascouxet al’s [29] table tells us thatL(4, 3, 1), L(8), L(4, 4),
L(7, 1) appear inS(4,3,1) each with multiplicity 1. Our morphisms showS(6,1,1) ⊂ S(4,3,1),
thusL(8), L(7, 1) remain. Since det(4, 3, 1) = ql(4,3,1) [2]−21[3]64[4]36[6]27 and

36− dim(L(6, 1, 1))− 2 · dim(L(7, 1)) = 9

(L(7, 1) is ‘below’ L(6, 1, 1)) we can locate these in the first Loewy layer. We have a
block [13]

S(4,3,1) =
L(4, 3, 1)

L(8) L(6, 1, 1) L(4, 4)
L(7, 1)

S(6,1,1) = L(6, 1, 1)
L(7, 1)

S(4,4) = L(4, 4)
L(7, 1)

S(7,1) = L(7, 1)
L(8)
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and S(8) = L(8) (and S(3,3,2) as above). Again this ‘agrees’ with the Lascouxet al [29]
q-depth data. A good guess for the form of a modestn = 8 projective module is thus

P(8) =

L(8)
L(7, 1) L(4, 3, 1)

L(8) L(3, 3, 2) L(8) L(6, 1, 1) L(4, 4)
L(4, 3, 1) L(7, 1)
L(8)

.

This is to be read as meaning that quotienting by the bottomi layers reveals the next layer
up as a semi-simple submodule, and should be compared with a typicalN = 2 projective
from [32, pp 169–74].
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